
Department of Control and Computer Engineering

Master’s degree in Cybersecurity

DDoS Attacks Detection and
Characterization

Pietro Armenante, Christian Coduri, Eliana De Giuseppe, Luca Serafini

Academic year 2023/2024



1 Internet Security and Distributed-Denial-of-Service

Internet security is a branch of computer security that contains the Internet, browser security, web site
security, and network security. Its objective is to establish rules and measures to use against attacks over
the Internet. The Internet is an inherently insecure channel for information exchange, with high risk of
intrusion or fraud, such as phishing, online viruses, trojans, ransomware and worms.

In computing, a denial-of-service attack (DoS attack) is a cyber-attack in which the attacker seeks to
make a machine or network resource unavailable to its intended users by temporarily or indefinitely di-
srupting services of a host connected to a network. Denial of service is typically accomplished by flooding
the targeted machine or resource with superfluous requests in an attempt to overload systems and prevent
some or all legitimate requests from being fulfilled.

In a distributed denial-of-service attack (DDoS attack), the incoming traffic flooding the victim
originates from many different sources. A DDoS attack uses more than one unique IP address or machi-
nes, often from thousands of hosts infected with malware.

The types of DDoS attacks that will be analysed, along with the benign traffic, are:

• DDoS UDP LAG, a large number of UDP packets are sent to a targeted server;

• DDoS SNMP, it uses a spoofed IP address to create requests, triggering a flood of SNMP responses;

• DDoS SSDP, it exploits the Universal Plug and Play (UPnP) network protocols;

• DDoS LDAP, the attacker sends small requests to a publicly available vulnerable LDAP server;

• DDoS MSSQL, it is based on tampering with the Microsoft SQL permission protocol to launch a
reflection attack;

• DDoS UDP, the victim server receives a large number of UDP packets from a large number of IP
addresses;

• DDoS NETBIOS, it makes the victim system unavailable to communication other NetBIOS hosts;

• DDoS SYN, the attacked server receives spoofed SYN requests containing a spoofed source IP
address at high speed;

• DDoS DNS, the attacker forms a query in response to which the DNS server returns as much data
as possible;

• DDoS TFTP, it makes a default request for a file, and the victim TFTP server returns data to the
requesting target host as a result of this request regardless of a file name mismatch;

• DDoS NTP, the attacker organizes a flood of fake NTP requests from a large number of IP addresses.

1



2 Data exploration and pre-processing

Data exploration and pre-processing are essential steps in the data analysis pipeline, aimed at under-
standing and preparing raw data for further analysis. These stages are crucial for extracting meaningful
insights, ensuring data quality, and enhancing the performance of machine learning models.

2.1 Data cleaning

The provided dataset, named df in the Python source code, contains traffic traces collected during the
execution of some of the most common DDoS attacks on the 1st of December 2018 from 09 : 17 : 11.18
to 13 : 34 : 27.98.

There are 64249 rows (objects) with 88 columns (features). Each row is referred to a flow (sequence
of packets exchanged between a source and a destination IP). The provided dataset is classified in 12
labels: 11 related to DDoS attacks. The last one is benign and specifies that the labelled flow does not
belong to any attack.

Analysing the dataset, it can be seen that there are no null features and there are 12 features that
have a unique value. Those features will be removed as they do not contribute in anyway to the analysis
of the dataset: their standard deviation is equal to 0. Furthermore, the features in the dataset are divided
into categorical and numerical, respectively 4 and 83.

2.2 Label analysis

Following a comprehensive dataset analysis, attention has been directed towards characterizing the be-
havior of the labels. Upon aggregating the dataset into two categories, malicious and benign traffic, it
becomes evident that the malicious category constitutes a predominant portion, accounting for 91.2%,
while benign traffic represents 8.8% of the dataset. Subsequently, a focused examination of attack fre-
quencies has been conducted, revealing that the most prevalent attacks include ddos udp lag, ddos snmp,
and ddos ssdp.

Figura 1: Distribution of malicious and benign traffic

2.3 Traffic level

In order to better understand how the traffic is distributed within the dataset, a comprehensive ana-
lysis was undertaken, focusing on different aspects such as protocols, flow volumes over time, and the
distribution of source and destination addresses.

To enhance interpretability, a protocol mapping was employed, translating numerical protocol codes
into their corresponding protocol names. Subsequently, the distribution of protocols was visually re-
presented, revealing that UDP is the most frequently used protocol, constituting 76.1% of the total.

2



Figura 2: Distribution of protocols

A detailed examination of the number of flows over time was conducted by partitioning time into
30-second slots. The resulting plot displayed multiple peaks, indicative of time slots characterized by a
significant surge in flow volume, aligning with the modus operandi of DDoS attacks involving numerous
flows over short durations.

Figura 3: Number of flows over time

The investigation extended to the analysis of IP addresses, with histograms depicting the distribu-
tion of source and destination addresses. 172.16.0.5 emerged as the most frequently used source IP
address, constituting 90.28%, while 192.168.50.1 dominated as the most prevalent destination IP address,
comprising 90.29%. Why are those values so high compared to the others?

In order to answer to this question, an analysis on the malign traffic, with a focus on the destination
and source IP addresses, was done. It is possible to see that the source IP associated to the malign traffic
is 172.16.0.5, while the destination IP is 192.168.50.1. So, it can be expected that the first is the attacker
and the second is the victim.

3



Figura 4: Distribution of source and destination IP addresses

Upon examinating the malign traffic, it became apparent that the source IP associated with malicious
activities is 172.16.0.5, while the destination IP is 192.168.50.1. This observation suggests a potential
adversarial context, where 172.16.0.5 may be identified as the attacker, and 192.168.50.1 as the victim.

To better prove this hypothesis, a renewed examination of the flow distribution over time was un-
dertaken, specifically focusing on flows related to these two addresses. At this point it is interesting to
understand if those peaks are related on the attacks performed.

Figura 5: Number of flows over time related to the two addresses

The peaks in flow distribution were found to distinctly align with the different attacks, thus confirming
the hypothesis as can be seen in the figure below.

4



Figura 6: Number of flows over time considering the attacks

2.3.1 Flow analysis

An examination of packet distribution within a specific timeframe highlights the prominence of a par-
ticular flow identified by the Flow ID 172.16.0.5 − 192.168.50.1 − 0 − 0 − 0. Further analysis of this
flow reveals its importance, by exhibiting a notably higher packet count. A subsequent in-depth analysis
discerns that this particular flow is exclusively associated with malign activity. This observation under-
scores the significance of Flow ID 172.16.0.5− 192.168.50.1− 0− 0− 0 within the dataset, emphasizing
its role as a prominent contributor to the overall malicious traffic.

Figura 7: Top 10 Flow ID with most Total Fwd Packets

Figura 8: Top 10 Flow ID grouped by label with most Total Fwd Packets

5



2.3.2 Port analysis

Upon an extensive analysis of the dataset, a focus was directed towards comprehending the behavior
of source ports. Utilizing a violin plot it is revealed that the preeminent source ports predominantly
fall within the numerical range of 0 to approximately 10000. Remarkably, this range aligns with the
well-known ports, signifying that the most frequently employed source ports in the dataset correspond
to those conventionally reserved for standard services and applications.

Figura 9: Violin plot for source port

At this point, an analysis on the distribution on the source ports in the different attacks can be done
using a boxplot. It shows that the median port number for benign traffic is much higher than the median
port number for any of the DDoS attack types. This suggests that benign traffic is more likely to use a
wider range of port numbers, while DDoS attacks tend to use a smaller number of ports.

The DDoS attack types that use the highest port numbers are ddos udp lag, ddos udp, and ddos syn.
These attacks are all UDP-based DDoS attacks, which are a type of attack that floods a target with UDP
packets. The DDoS attack types that use the lowest port numbers are ddos dns, ddos ldap, ddos mssql,
and ddos netbios. These attacks are all TCP-based DDoS attacks, which are a type of attack that floods
a target with TCP SYN packets.

Figura 10: Boxplot for source port distribution

6



In contrast to the distinct pattern observed in the distribution of source ports, the analysis of desti-
nation ports reveals a more uniform distribution (Figure 11). The resulting graph, particularly depic-
ted through a boxplot in Figure 12, underscores the lack of discernible patterns that could aid in the
recognition of different attack types.

Figura 11: Violin plot for destination port

Furthermore, the boxplot analysis draws attention to an intriguing aspect: benign traffic demonstrates
an association with lower destination ports. This behavior aligns with the broader observation that benign
activities tend to utilize ports within a specific range. Notably, a similar pattern is discerned in the case of
the ddos ntp attack, highlighting the notion that this particular attack type exhibits a similar port-related
behavior as benign traffic.

Figura 12: Boxplot for destination port distribution

To enhance the comprehension of each flow’s behavior within the dataset, a set of new features
has been introduced, increasing the total number of columns to 94. These newly incorporated features
provide statistical insights into key attributes, including ’Total Fwd Packets’, ’Total Backward Packets’,
’Flow Duration’, and ’Flow Packets/s’. The additional features encompass the mean value, maximum
value, minimum value, and quantile information for each of these attributes.

7



2.4 Correlation analysis

Following the analysis of network traffic, the subsequent step involves conducting a correlation analysis
on the dataset features. To facilitate this analysis, preliminary steps include the encoding of categorical
features by converting them into numerical values. The encoded labels are meticulously stored in a
dedicated DataFrame denoted as df label in order to better administrate them in the following steps,
while the other categorical features remain within the original dataset, referred to as df. Additionally,
for a standardized representation of time, the timestamp data has been transformed into integer values,
representing time in seconds relative to a predefined reference date (’2018− 12− 01, 10 : 51 : 39.813448’).

In preparation for the standardization process, the distinct measurement units associated with various
features necessitate a preliminary step. The labels have been removed from the dataset. Subsequently, the
standardization procedure has been executed, resulting in the creation of a new DataFrame designated
as feature new.

The creation of a correlation matrix (Figure 13) has shown that certain features exhibit a high
degree of correlation with one another, even considering its extensive array of features. This observation
underscores the interdependencies and relationships that exist among specific attributes.

Figura 13: Correlation matrix

8



Upon analysing the correlation matrix, it has been decided to removing features exhibiting a high
correlation coefficient, specifically those exceed the threshold of 0.8. This thresholding process resulted in
the elimination of 53 features. Consequently, a refined DataFrame, denoted as newdf, has been created,
encompassing only the remaining features that satisfy to the defined correlation threshold. This strategic
reduction not only optimizes computational efficiency but also preserves the most informative and distinct
attributes. This new dataset will be composed of 39 features.

Based on the obtained DataFrame, a new correlation matrix can be computed (Figure 14).

Figura 14: Correlation matrix of the reduced DataFrame

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) emerges as a pivotal technique in the realm of data analysis, offering
a powerful means to split complex information and uncover latent structures within a dataset. The prima-
ry objective of PCA is to transform a high-dimensional dataset into a lower-dimensional representation,
known as principal components, while retaining as much of the original variance as possible.

The PCA will be performed on the scaled dataframe (newdf ) and Kaiser’s rule will be used to detect
the right number of principal components. The Kaiser’s rule is an heuristic guideline that suggests

9



retaining principal components with eigenvalues greater than 1 and discarding those with eigenvalues less
than or equal to 1. The idea is that eigenvalues less than 1 contribute less variance than a single original
variable, and by retaining components with eigenvalues greater than 1, it is preserved more information
than any individual variable. According to the described method, the number of PCs selected is 13.

Figura 15: Principal Component Analysis

Since PCs are linear combination of the original features and the first are the most relevant ones, it is
interesting to show how they are composed. In the tables below it is possible to see the most important
features involved along with their respective weights.

Figura 16: Top 5 for PC0 and PC1

Following careful consideration, a decision has been made to employ the reduced DataFrame (newdf )
rather than the Principal Components (PCs) in the upcoming analytical steps. This choice comes from the
will to enhance the interpretability and clarity of the results. While PCs encapsulate key patterns within
the data, their representation might not lend itself to a straightforward and meaningful visualization.

10



3 Supervised learning - Classification

In this section, a supervised learning procedure will be performed in order to classify the different flows
according to the attacks.

The preliminary step involves the splitting of the whole dataset into training (X ) and testing (X test)
set. This stratified partitioning is executed with respect to the labels, ensuring that the distribution of
attack types is representative in both the training and testing subsets. The division of the dataset follows
a predetermined ratio, allocating 70% of the data to the training set (X ) and the remaining 30% to the
testing set (X test). In addition, the training set is further split into training (X train) and validation
(X val) set.

1 X, X_test, y, y_test = train_test_split(newdf, y, stratify=y, train_size=0.7,

random_state=15)↪→

2

3 X_train, X_val, y_train, y_val = train_test_split(

4 X, y,

5 stratify = y,

6 train_size = 0.5/0.7,

7 random_state = 15

8 )

Figura 17: Script for the splitting of the dataset

3.1 Supervised learning algorithms

The classification will be performed by means of three different supervised learning algorithm:

• Random Forest (RF)

• Support Vector Machine (SVM)

• K-Nearest Neighbour (K-NN)

For each algorithm, default parameters for the classifiers are used and performances are evaluated by
means of confusion matrix, precision, recall and F1 score.

3.1.1 Random Forest

Random Forest is a learning algorithm used for classification and regression tasks. It builds multiple
decision trees during training and merges their predictions to improve accuracy and prevent overfitting.

1 rf_clf = RandomForestClassifier()

2 rf_clf.fit(X_train, y_train)

3 y_train_pred_rf = rf_clf.predict(X_train)

4 y_val_pred_rf = rf_clf.predict(X_val)

Figura 18: Creation of RandomForestClassifier

After the fit and predict operations, the results are shows by the following classification report. The
graph shows that the metrics of the RandomForestClassifier are almost perfect.

11



Figura 19: Precision, recall and F1 score for RF

Figura 20: Confusion matrix for RF

3.1.2 Support Vector Machine

Support Vector Machines (SVM) is an algorithm used for classification and regression. It seeks an optimal
hyperplane to separate data points, maximizing the margin between classes.

1 svm_classifier = SVC()

2 svm_classifier.fit(X_train, y_train)

3 svm_train_predictions = svm_classifier.predict(X_train)

4 svm_val_predictions = svm_classifier.predict(X_val)

Figura 21: Creation of SVC

After the fit and predict operations, the results are shown by the following classification report. The
graphs show that the metrics of the SVC are good but not like the RF.

12



Figura 22: Precision, recall and F1 score for SVM

Figura 23: Confusion matrix for SVM

3.1.3 K-Nearest Neighbour

k-Nearest Neighbors (KNN) is an algorithm for classification and regression tasks. It operates on the
principle of proximity, making predictions based on the majority class or average of nearby data points
in the feature space.

1 knn_clf = KNeighborsClassifier()

2 knn_clf.fit(X_train, y_train)

3 y_train_pred_knn = knn_clf.predict(X_train)

4 y_val_pred_knn = knn_clf.predict(X_val)

Figura 24: Creation of KNeighborsClassifier

After the fit and predict operations, the results are shown by the following classification report. The
graphs show that the metrics of the KNeighborsClassifier are good but not like the others.

13



Figura 25: Precision, recall and F1 score for K-NN

Figura 26: Confusion matrix for K-NN

3.2 Hyper-parameters tuning

Analysing the confusion matrices and classification report, it is possible to understand if underfitting or
overfitting occur. Underfitting is characterized by low accuracy, recall, and F1-score on both training and
validation sets, accompanied by high off-diagonal elements in the confusion matrix for the training set.
On the other hand, overfitting manifests as high accuracy, precision, recall, and F1-score on the training
set but lower values on the validation set, accompanied by high diagonal elements in the confusion matrix
for the training set.

Based on those statements, it is possible to declare that neither underfitting nor overfitting occur.
Further analysis can be done by tuning the hyper-parameters in order to get the most efficient confi-

guration for the three models previously introduced. The validation curves, depicted in Figure 27, align
with the earlier assessments. Notably, both the training score and validation score do not exhibit charac-
teristics indicative of underfitting or overfitting. The absence of low training scores implies a well-fitted
model to the training data, while the high validation scores signify robust generalization to unseen data.

The performance indicators exhibit a balanced representation, suggesting that the model adequately
captures patterns within the training data while generalizing effectively to the validation set.

Following the previous analysis, it is possible to identify the best model as the Random Forest. The
value chosen for the Random Forest hyper-parameter is 10. It is the one that will be used in the following
steps.

14



Figura 27: Validation curve for RF, SVM and KNN

3.3 False Positive and False Negative inspection

An examination of misclassifications has been conducted, involving the assessment of False Positive and
False Negative assignments for each class. Remarkably, the findings reveal an infrequent occurrence of
misclassifications across all classes. The model demonstrates a high level of accuracy in distinguishing
between true positive instances and minimizing false assignments.

This robust performance in terms of misclassifications further reinforces the effectiveness of the mo-
del. The scarcity of False Positives and False Negatives underscores the model’s precision and recall
capabilities, indicating its proficiency in correctly identifying instances and minimizing errors.

Figura 28: Confusion matrix in terms of labels

15



The ROC curve, shown in Figure 29, serves as further confirmation of the model’s robust performance.
The curve’s trend to the upper-left corner, together with a high Area Under the Curve (AUC) score,
attests to the model’s ability to discriminate between classes effectively.

Figura 29: ROC for Random Forest

Finally, the feature importance analysis indicates that the feature contributing the most to misclassi-
fication is the Timestamp. This suggests that the model may not effectively utilize temporal information
to distinguish between the two types of flows.

Figura 30: Feature importance analysis related to missclassifications

16



1 feature_names = newdf.columns

2

3 feature_importances = rf_clf.feature_importances_

4

5 sorted_feature_indices = np.argsort(feature_importances)[::-1]

6

7 sorted_feature_names = feature_names[sorted_feature_indices]

8

9 plt.figure(figsize=(20, 8))

10 plt.bar(range(X_train.shape[1]), feature_importances[sorted_feature_indices])

11 plt.xticks(range(X_train.shape[1]), sorted_feature_names, rotation=45,

ha='right')↪→

12 plt.tick_params(axis='x', which='major', pad=8)

13

14 plt.xlabel('Feature')

15 plt.ylabel('Importance')

16 plt.title('Feature Importance')

17 plt.tight_layout()

Figura 31: Code for missclassification

3.4 Testing performance

Following the training phase with the Random Forest model, a testing phase was conducted using the
selected number of estimators (n estimators = 10 ). The outcomes of the testing phase are summarized
in the following visuals. The testing results confirm the performance observed during the training phase.

Figura 32: Test performance

Such high performance could be due to the use of categorical features such as Flow ID. In fact, since
a few ports dominate over the entire distribution of senders and receivers, it is enough to know that a
Flow ID has made malicious attacks to always categorize it in the same way. While this information is
interesting because it means that having a memory of past attacks significantly improves classification, it
can also be considered as overfitting, because the model is not actually extracting information from the
data but is only storing it. This kind of overfitting is not visible from the split you made because there
should only be new flow-ids in the test set.

17



4 Unsupervised learning - Clustering

In this section, alternative machine learning methodologies will be employed that operate independently
from the labels. Such methodologies are commonly categorized as unsupervised learning techniques,
designed to cluster datasets based solely on their inherent structure and characteristics.

From now on, the dataset previously subjected to dimensionality reduction and scaling, denoted as
newdf, will be referred as newdf cluster for the purpose of clustering analysis.

At first glance, it is interesting to visualize the distribution of data along the axes of the two most
significant principal components.

Figura 33: Data distribution of samples by means of 2 PCs

From the scatter plot, it is evident that the structure delineated by the primary two principal com-
ponents is non-Euclidean in nature. Consequently, traditional clustering algorithms such as k-means
and Gaussian Mixture Models (GMM) are not the best choice for this dataset. A valid alternative
could be DBSCAN; however, its implementation entails considerable computational time, which may be
prohibitive for practical use. For this reason K-means and GMM will be used.

4.1 K-means

K-means represents a hard clustering technique wherein each sample is exclusively associated with a
single cluster. This method partitions a set of m observations into k clusters, where each observation is
assigned to the cluster whose mean (cluster centroid) is closest to it.

As the initial step, the behavior of K-means was examined by dividing the data into 12 clusters,
corresponding to the number of labels present, using default hyperparameters. This process involved first
computing the centroids and subsequently assessing several metrics such as silhouette score, adjusted rand
index, and rand index.

Figura 34: K-means with random parameters

Looking at the results in Figure 34, this initial configuration is not optimal due to the low silhouette
score and high clustering error observed. Hence, it becomes imperative to determine the most appropriate
number of clusters and the optimal hyperparameter values.

18



4.1.1 Determining the number of clusters via Silhouette Analysis and Elbow Method

Silhouette analysis assesses the similarity of an object to its own cluster (cohesion) relative to other
clusters (separation). The silhouette score ranges from -1 to 1, where higher values indicate more distinct
clusters. Meanwhile, the elbow method entails executing the KMeans algorithm across a range of cluster
numbers and plotting the sum of squared distances (inertia) against the number of clusters. The point
at which the decrease in inertia decelerates (forming an ”elbow” in the plot) is often considered a reliable
estimate for the optimal number of clusters.

Both methods can be utilized to choose the appropriate number of clusters for a given dataset.

Figura 35: Tuning the number of clusters

The silhouette plot suggests two as the optimal value. However, to strike a balance with the clustering
error, three clusters were chosen as it exhibits lower clustering error and a similar silhouette score.

The following graph illustrates a comparison of various data distributions based on their number of
clusters against the ground truth.

Figura 36: Comparison of data distributions

4.1.2 Hyper-parameter tuning

The K-means method requires the usage of hyper parameter such as init and random state. The parameter
init can take on the values of kmeans++ and random, while random state selects from 0, 15, 42, and
99 (random numbers). Their selection is performed through a grid search, which explores all possible
combinations of specified values. The combination yielding the highest silhouette score is chosen as
the optimal configuration. In the analyzed scenario, the recommended parameters correspond to those
illustrated in Figure 37.

Figura 37: Result of hyper-parameter tuning

19



After determining the correct number of clusters and the hyperparameter values, the K-means algo-
rithm is re-run with these values, and the following results are obtained.

Figura 38: The new recomputed silhouette score

As shown in the Figure 38 the Silhouette score is better then the previously measured in Figure 34.

4.2 Gaussian Mixture Modelling (GMM)

Gaussian Mixture Models (GMM) contrast with K-means as a soft clustering technique, wherein each
sample is probabilistically associated with multiple clusters. GMM assumes that data points are generated
from a mixture of several Gaussian distributions. This probabilistic approach allows GMM to capture
complex data distributions and account for overlapping clusters.

Looking at the results in Figure 39, this initial configuration is not optimal due to the low silhouette
score and high clustering error observed. So, it is needed to determine the most appropriate number of
clusters and the optimal hyperparameter values.

As a first step, the behavior of GMM is examined by assigning 12 clusters, mirroring the approach
previously employed with K-means.

Figura 39: GMM with random parameters

As expected, the Silhouette value is not optimal, so an investigation about the number of cluster and
hyper parameters values is needed.

4.2.1 Determining the number of clusters via Silhouette, Log-likelihood Analysis and
Adjusted Rand Index

The log-likelihood is a measure that assesses how well the model explains the observed data. It quantifies
the probability of observing the given data under the parameters of the GMM. Maximizing the log-
likelihood during training is a common objective, as it leads to a better fit of the model to the data.

ARI measures the similarity between the true class assignments and the assignments predicted by
the model, while correcting for chance. ARI ranges from −1 to 1, where 1 indicates perfect clustering,
0 suggests random clustering, and negative values mean the clustering is worse than random. A higher
ARI implies better agreement between the true and predicted clusters, considering the baseline of random
clustering.

Figura 40: Tuning the number of clusters

20



As depicted in the Figure 40, the optimal value for the silhouette metric is observed at 3. However,
the values for log-likelihood and ARI suggest considering higher values. Specifically, a compromise has
been chosen, and the value 7 has been selected. This decision involves a trade-off: the silhouette metric
is lowered, while both log-likelihood and ARI are increased. This choice is made with the intention of
balancing the metrics and achieving a more satisfactory overall performance in the given context.

The Figure 41 illustrates a comparison of various data distributions based on their number of clusters
against the ground truth.

Figura 41: Comparison of data distribution

4.2.2 Hyper-parameter tuning

As for K-means, GMM requires the usage of hyper-parameters like init e random state. Their selection
is performed through a grid search. The combination yielding the highest silhouette score is chosen as
the optimal configuration. In the analyzed scenario, the recommended parameters correspond to those
illustrated in Figure 42.

Figura 42: Result of hyper-parameter tuning

After determining the correct number of clusters and the hyperparameter values, the GMM algorithm
is re-run with these values, and the following results are obtained.

Figura 43: The new recomputed silhouette score

As shown in the Figure 42 the Silhouette score is better then the previously measured in Figure 39.
Finally, the following graphs depict the contribution of each cluster to the final silhouette score, which

defines the quality of the utilized algorithm.

Figura 44: Silhouette analysis for clusters in K-means and GMM

21



5 Clusters explainability and analysis

In this section, an analysis of the identified clusters will be conducted, accompanied by an interpretation
at the ground truth level. However, prior to proceeding, it is imperative to select only one of the clustering
techniques developed earlier.

As shown in the Figure 45, it seems that the K-means technique is better than GMM.

Figura 45: Comparison between K-means and GMM

Upon examinating Figure 46, it becomes evident that the ground truth does not align with the
predicted clusters.

Figura 46: Cluster with K=3

It is time to investigate how the clusters are composed and their intrinsic characteristics.
The graphs in Figure 48 show how datapoints in a certain class are distributed over the various clusters.

Specifically it is possible to deduce how many clusters are needed to reach the 100% occurrencies. It,
also, shows which cluster most contributes to this percentage For example:

• The benign class reaches the 94% with Cluster0, then 98% with Cluster1 and 100% with Cluster2.

• The ddos syn class reaches the 0% with Cluster0, then the 42% with Cluster1 and 100% with
Cluster2

• The ddos udp lag class reaches the 0% with Cluster0, then the 0% with Cluster1 and 100% with
Cluster2

• And so on...

To enhance the visualization of data point distribution and Empirical Cumulative Distribution Functions
(ECDF), the table in Figure 47 illustrates the occurrence count for each class assigned to respective
clusters.

Figura 47: Class Cluster Counts Analysis

22



Figura 48: ECDF of clusters assigned to each class

Upon a closer examination of the table content, it is evident that there are no pure clusters, as none
consist solely of one class. Nevertheless, a notable dominance of two classes within Cluster 0 and 1 is
observed. Cluster 0 predominantly contains a high percentage of benign occurrences, while Cluster 1 is
primarily composed of ddos syn attacks. Furthermore, an interesting observation is the behavior of the
ddos ntp class, which exhibits similarities to benign flows. Similarly, though in smaller quantities, even
the benign class displays behaviors similar to malicious activities. The ddos syn attack class is nearly
evenly distributed between Cluster 1 and Cluster 2, suggesting the difficulty in categorizing such attack
types distinctly. Lastly, Cluster 2 exhibits a high concentration of malicious attacks.

From this point, the clustered data will be treated as a new variable named clustered data, which is
a copy of the newdf cluster.

It is interesting to understand what are the most important features in each obtained cluster. What
are the most significant features which permit to assign a datapoint to a given cluster? Feature impor-
tance analysis can be performed.

In order to compute feature importance, it is mandatory to import those libraries.

1 ! git clone https://github.com/YousefGh/kmeans-feature-importance.git

2 ! mv "./kmeans-feature-importance/kmeans_interp/" "."

3 ! pip install -r "kmeans-feature-importance/requirements.txt"

Figura 49: Feature importance import

23



To perform feature importance, a K-means interpreter is initialized with the following code:

1 kms = KMeansInterp(n_clusters=best_n,

2 random_state=15,

3 init = 'random',

4 n_init = 10,

5 ordered_feature_names = clustered_data.columns,

6 feature_importance_method='wcss_min',

7 ).fit(clustered_data)

8

9 labels = kms.labels_

10 clustered_data['cluster']=labels

Figura 50: Feature importance code

The KMeansInterp has been initialized by means of the same hyper-parameters used in the previous
section. Moreover, it requires the usage of other parameters such as:

• ordered fearure names, it consists of the list of features;

• feature importance method, it consists in the method used to compute the figure importance. The
feature importance is determined based on Within-Cluster Sums of Squares: it implies that the
algorithm assesses how much each feature contributes to minimizing the WCSS. Features that lead
to more compact and well-defined clusters are considered more important in this context.

Figura 51: Feature importance analysis

Regarding cluster 0 and cluster 2

• Source IP is determinant in distinguishing between benign and malicious traffic. Certain source IPs
may be associated with known benign entities or trusted sources, while others might be indicative
of malicious activities. As anticipated in first section (at Figure 4), the most of the attacks are
associated to specific source IP. This helps to tag a flow as malign.

• Inbound suggests that the directionality of network communication (i.e., whether it is directed
towards the device or initiated by the device) plays a crucial role in distinguishing between benign
and malicious traffic.

For what concerns cluster 1, it can be seen that is predominantly composed of the features flow duration min,
flow duration max and idle std.

24



• The importance of flow duration suggests that the duration of the traffic flow plays a key role in
identifying ddos syn attacks within this specific cluster.

• The significance of idle std indicates that the variability or spread in the idle time of network
communication is crucial for distinguishing ddos syn attacks within this cluster.

5.1 Sub-attack analysis

Considering that Cluster 2 encompasses various attacks, a decision was made to perform a secondary
clustering within this cluster. The objective is to discern whether some of the attacks may belong to
different sub-clusters. The identification of the same attack across different clusters could imply the
existence of multiple variants exhibiting diverse characteristics.

From this point onward, it will exclusively utilized a subset of the clustered data, consisting of data
points belonging to Cluster 2 (cluster subAttack). The following graph represents the distribution of data
for Cluster 2.

Figura 52: Scatter plot of cluster subAttack

As done in previous sections, following an analysis of silhouette scores and clustering errors, a decision
has been made to employ 12 as the number of sub-clusters within Cluster 2.

Figura 53: Metrics for cluster subAttack

25



Figura 54: Scatter plot for sub-clusters

Figura 55: Numerical table for the scatter plot

The tables enable the identification of various patterns within the same attack category. In essence,
it becomes possible to discern different typologies within a given attack. An attack exhibiting diverse
characteristics is segmented into different clusters, similar to having two or more distinct ”species” of
attacks. For instance, the analysis reveals that the ddos udp lag and ddos udp attacks exhibit three di-
stinct forms, each further categorized into sub-clusters.

On the other hand, attacks like ddos dns share common traits with other attacks, making them ea-
sily mistakabled. Furthermore, the ddos dns class contributes to the formation of two pure clusters,
denoted as 0 and 4. This suggests that the ”species” within these clusters are easily distinguishable
compared to other species within the same class.

Analyzing the feature importance associated with the assignment of attacks to their respective clusters is
an intriguing task. As an example, one may consider the distribution of the ddos udp and ddos udp lag
attacks, which are allocated across clusters 2, 3, and 11.

To better understand the distinguishing features among the three different species of UDP lag and
UDP, a decision was made to perform feature importance analysis. From the obtained results, it is evident
that both present three sub-attacks, two of which are similar and one is not.

• For ddos udp, Cluster 0 and Cluster 1 are similar, as illustrated in the graph 56, sharing the same
top three feature importances; the other, though similar, differs in the destination port.

26



Figura 56: Feature importance for ddos udp

• Regarding ddos udp lag, Cluster 0 and Cluster 2 are similar, as shown in the graph 57, sharing the
same top four feature importances; the other, though similar, differs in the destination port.

Figura 57: Feature importance for ddos udp lag

In conclusion, the analysis of these feature importances allows for the distinction between different
variants of the same attack. This type of analysis could be applied to any type of attack present in the
dataset, bearing in mind that in some cases, distinguishing between variants might be more complex.

27


	Internet Security and Distributed-Denial-of-Service
	Data exploration and pre-processing
	Data cleaning
	Label analysis
	Traffic level
	Flow analysis
	Port analysis

	Correlation analysis
	Principal Component Analysis


	Supervised learning - Classification
	Supervised learning algorithms
	Random Forest
	Support Vector Machine
	K-Nearest Neighbour

	Hyper-parameters tuning
	False Positive and False Negative inspection
	Testing performance

	Unsupervised learning - Clustering
	K-means
	Determining the number of clusters via Silhouette Analysis and Elbow Method
	Hyper-parameter tuning

	Gaussian Mixture Modelling (GMM)
	Determining the number of clusters via Silhouette, Log-likelihood Analysis and Adjusted Rand Index
	Hyper-parameter tuning


	Clusters explainability and analysis
	Sub-attack analysis


