
Department of Control and Computer Engineering

Master’s degree in Cybersecurity

Lottery Scheduling Implementation
for FreeRTOS

Pietro Armenante, Christian Coduri, Giovanni Lombardi, Luca Serafini

Academic year 2023/2024

1 Introduction to FreeRTOS

FreeRTOS is a real-time operating system kernel for embedded devices, designed to be small and simple.
It is mostly written in the C programming language to make it easy to port and maintain.

1.1 Explore Fundamentals APIs

To better understand FreeRTOS functionalities and its API, a practical example has been developed,
integrating the essential components of the kernel for task execution.

1.1.1 UART Configuration

The UART (Universal Asynchronous Receiver-Transmitter) stands as one of the most widely employed
device-to-device communication protocols. In this context, the UART peripheral facilitates the trans-
mission and reception of serial data between the microcontroller (Cortex-MPS2) and external devices
(QEMU). The initialization of the UART peripheral is carried out within the function prvUARTInit,
enabling functionalities such as printing messages to the console using printf.

1.1.2 Task Creation API

To create tasks, in the main the function xTaskCreate is used. The required parameters include: a
pointer to the task function (code executed by the task), a descriptive name for the task, the number of
words allocated for the task’s stack, the value passed as the parameter to the created task, the priority at
which the task will execute (low priority numbers denote low priority tasks), and a handle to the created
task.

1 #define TASK_1_PRIORITY 6

2 #define TASK_2_PRIORITY 1

3 #define TASK_3_PRIORITY 6

4 #define TASK_4_PRIORITY (configMAX_PRIORITIES - 1)

5

6 #define STK_SIZE 200

7

8 // (...)

9

10 void main(void)

11 {

12 // (...)

13

14 xRet_1 = xTaskCreate(vTask1, "vTask1", STK_SIZE, (void *)pcTextForTask1, TASK_1_PRIORITY, &xHandle_1);

15 xRet_2 = xTaskCreate(vTask2, "vTask2", STK_SIZE, (void *)pcTextForTask2, TASK_2_PRIORITY, &xHandle_2);

16 xRet_3 = xTaskCreate(vTask3, "vTask3", STK_SIZE, (void *)pcTextForTask3, TASK_3_PRIORITY, &xHandle_3);

17 xRet_4 = xTaskCreate(vTask4, "vTask4", STK_SIZE, (void *)pcTextForTask4, TASK_4_PRIORITY, &xHandle_4);

18

19 // (...)

20 }

1.1.3 Mutex API for Synchronization

It is possible to create a mutex simply by using the FreeRTOS Semaphore API.

xMutex = xSemaphoreCreateMutex();

This semaphore will be used to ensure mutual exclusion while accessing the UART peripheral from
multiple tasks, preventing data corruption or conflicts during simultaneous access.

1 void vTask1(void *pvParameters)

2 {

3 char *pcTaskName = (char *)pvParameters;

4

5 for (;;)

6 {

7 // Attempt to take the mutex, blocking indefinitely if necessary

8 if (xSemaphoreTake(xMutex, portMAX_DELAY) == pdTRUE)

9 {

10 // (...)

11

1

12 // Release the mutex

13 xSemaphoreGive(xMutex);

14

15 // Introduce a time-slice delay

16 vTaskDelay(pdMS_TO_TICKS(ROUND_ROBIN_TIME_SLICE));

17 }

18 else

19 {

20 printf("Error taking the mutex\r\n");

21 }

22 }

23 }

In the example, the first three tasks are executed using this simple structure, alternating among
themselves via semaphore synchronization.

1.1.4 Timer and Task Notifications API

In contrast, the execution of the fourth task relies on a timer mechanism. Initially, the timer must be
created. The function API requires arguments such as a timer name, a timer period specified in ticks, a
parameter indicating autoreload to determine whether it should be a one-shot timer or a repeated one, a
Timer ID, and finally a callback function.

xTimer = xTimerCreate("Timer", pdMS_TO_TICKS(10000), pdTRUE, 0, vTimerCallback);

Concerning the timer period, the pdMS TO TICKS macro converts milliseconds to ticks, which represent
the fundamental time unit in FreeRTOS. In this scenario, the timer period is configured for 10 seconds.

Following the initialization and creation, it is necessary to start the timer:

xTimerStart(xTimer, 0);

At this point, the timer starts counting. When it expires a timer callback function is called. This
function’s purpose is to notify Task 4 that the event has occurred. Subsequently, Task 4, which was
awaiting this notification, can proceed to execute its code: attempting to acquire the semaphore and
printing its message.

1 static void vTimerCallback(TimerHandle_t xTimer)

2 {

3 // Notify the fourth task that 10 seconds have passed

4 vTaskNotifyGiveFromISR(xHandle_4, NULL);

5 }

6

7 static void vTask4(void *pvParameters)

8 {

9 char *pcTaskName = (char *)pvParameters;

10

11 for (;;)

12 {

13 // Wait for the timer callback to signal that 10 seconds have passed

14 ulTaskNotifyTake(pdTRUE, portMAX_DELAY);

15

16 // Acquire semaphore and print the message as done for other tasks

17 // (...)

18 }

19 }

1.2 Task Priority & Scheduling

FreeRTOS implements a scheduling policy characterized by the following features:

• Fixed-Priority: Each task is assigned a priority from 0 to (configMAX PRIORITIES - 1) and
this remain constant, although they may receive temporary boosts.

• Preemptive: Ensures that the highest priority task capable of running takes precedence, even if
it interrupts a lower priority task.

• Round-Robin time-slicing: allowing tasks of equal priority to take turns running.

2

One consequence of always running the highest priority task capable of running is that a high priority
task that never enters the Blocked or Suspended state will permanently starve all lower priority
tasks of any execution time. This is the reason why it is generally preferable to create tasks that are
event-driven. This characteristic explains why Task 4 in the preceding example, which had the highest
priority, did not starve the other tasks.

2 Purpose of the Report

The purpose of this report is to implement a lottery scheduling algorithm in FreeRTOS, providing an
alternative to the default configuration discussed previously.

A lottery scheduler is a probabilistic scheduling algorithm structured around the following principles:

1. Ticket Allocation: Each process is assigned a specific number of lottery tickets according to its
priority. Higher-priority processes typically receive more tickets, increasing their likelihood of being
selected by the scheduler.

2. Random Ticket Selection: When it’s time to choose the next process for execution, the scheduler
randomly selects a ticket from the total pool of tickets.

3. Winner Determination: The process associated with the winning ticket is designated for execu-
tion. While all processes have the opportunity to be chosen, those with a greater number of tickets
have higher odds of winning the lottery and being scheduled for execution.

4. Execution: The selected process is then given control of the CPU and allowed to execute for a
certain time slice or until it terminates or yields the CPU.

5. Repeat: The lottery ticket scheduler continues to repeat this process, periodically selecting a new
process to run based on the outcome of the lottery drawing.

On average, CPU time is proportional to the number of tickets given to each tasks. Giving each
process at least one lottery ticket guarantees that it has a non-zero probability of being
selected at each scheduling operation. For this reason the lottery ticket scheduler provides a fair
method for allocating CPU time among processes, mitigating the risk of starvation.

2.1 Pseudo Code

Here’s a pseudo code representation of the lottery ticket scheduler:

1 function lottery_scheduler(processes):

2 total_tickets = calculate_total_tickets(processes)

3 while True:

4 winning_ticket = generate_random_number(1, total_tickets)

5 selected_process = select_process_by_ticket(processes, winning_ticket)

6 execute(selected_process)

7

8 def calculate_total_tickets(processes):

9 total = 0

10 for process in processes:

11 total += process.tickets

12 return total

13

14 def select_process_by_ticket(processes, winning_ticket):

15 current_ticket = 0

16 for process in processes:

17 current_ticket += process.tickets

18 if current_ticket >= winning_ticket:

19 return process

3

2.2 Example

Let’s consider a simplified scenario with two processes:

• Process A: 5 lottery tickets

• Process B: 3 lottery tickets

In total, there are 8 lottery tickets distributed among the two processes. Now, let’s simulate the lottery
drawing process. The scheduler generates a random number between 1 and 8 to select the winning ticket.

Suppose the generated random number is 6. To determine the winning process, we traverse the list
of processes, keeping a running count of the tickets. Since the winning ticket falls within the range of
Process B’s tickets, Process B is selected as the winner and for this reason is scheduled to run next.

3 Implementation of Lottery Scheduling in FreeRTOS

To provide flexibility in selecting between priority-based and lottery scheduling algorithms, a similar
configuration approach as other FreeRTOS settings is adopted.

3.1 Configuration Costant

In the file FreeRTOSConfig.h, there is a set of constants, which can be modified to alter the default
behavior of the scheduler. This customization empowers users to use a scheduler that aligns better with
their specific requirements

Within this file, a constant named configUSE TICKETS has been defined. Setting it to 1 indicates the
adoption of the lottery scheduling algorithm, while setting it to 0 implies the utilization of the default
scheduler.

3.2 New TCB

To integrate this modification in an elegant way, the Task Control Block (TCB) structure has been revised
to include the effective number of tickets assigned to each task.

1 // Task control block structure (one for each task)

2 typedef struct tskTaskControlBlock

3 {

4 volatile StackType_t * pxTopOfStack;

5

6 // Other parameters

7 // (...)

8

9 #if (configUSE_TICKETS == 1)

10 int nTickets;

11 #endif

12

13 } tskTCB;

3.3 Ticket Allocation

In the task.h file, the prototype of the function xTaskCreate, which creates tasks in a dynamic way, has
been modified to allow specifying the number of tickets directly when creating a new task.

1 #if (configSUPPORT_DYNAMIC_ALLOCATION == 1)

2 BaseType_t xTaskCreate(TaskFunction_t pxTaskCode, // Pointer to the task entry function

3 const char * const pcName, // Name for the task

4 const configSTACK_DEPTH_TYPE usStackDepth, // Number of words to allocate - stack

5 void * const pvParameters, // Parameter passed to the created task

6 UBaseType_t uxPriority, // Priority of the created task

7 TaskHandle_t * const pxCreatedTask, // To pass out the task's handler

8 int pxTicketNumber // Number of tickets that the task has

9) PRIVILEGED_FUNCTION;

10 #endif

The function xTaskCreate’s definition, contained in the file task.c, has been changed in the passed pa-
rameters. Moreover, an additional parameter has been included in the function call to prvInitialiseNewTask.

4

1 #if (configSUPPORT_DYNAMIC_ALLOCATION == 1)

2 BaseType_t xTaskCreate(...)

3 {

4 TCB_t * pxNewTCB;

5 BaseType_t xReturn;

6

7 // Allocating space for the Stack

8 // (...)

9

10 // Allocating space for the TCB

11 // (...)

12

13 if(pxNewTCB != NULL)

14 {

15 // (...)

16

17 prvInitialiseNewTask(pxTaskCode, pcName, (uint32_t) usStackDepth, pvParameters, uxPriority,

18 pxCreatedTask, pxTicketNumber, pxNewTCB, NULL);

19 prvAddNewTaskToReadyList(pxNewTCB);

20 xReturn = pdPASS;

21 }

22 else

23 {

24 xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;

25 }

26

27 return xReturn;

28 }

29 #endif

The prvInitialiseNewTask function has been updated to store also the number of ticket with all
the necessary information into the already allocated TCB. On the other hand, the functionality of the
prvAddNewTaskToReadyList function, responsible for adding the TCB of the created task to the ready
list, remains unaltered.

The added part in the prvInitialiseNewTask function is the following one:

1 static void prvInitialiseNewTask(...)

2 {

3 // (...)

4

5 /* Store the number of tickets in the TCB. */

6 #if (configUSE_TICKETS == 1)

7 if(pxTicketNumber > 100) // Task with pxTicketNumber setted at NULL (e.g IDLE task)

8 pxNewTCB->nTickets = 0;

9 else

10 pxNewTCB->nTickets = pxTicketNumber;

11

12 printf("\t-> The number of tickets set for the task %s is: %d\n", pcName, pxNewTCB->nTickets);

13 #endif

14

15 // (...)

16 }

Thanks to this process, the function to create task dynamically can be called in the following way:

xTaskCreate(vTask, "vTask", STACK_SIZE, (void *)param, TASK_PRIORITY, &xHandle, 55);

Due to the addition of a new parameter, all occurrences of the xTaskCreate function throughout the
Operating System have been modified. This change involves appending the new parameter, set to null,
ensuring compatibility with the default scheduler algorithm.

3.4 Random Ticket Selection

With the structure in place, the next step is to implement the scheduling logic.
In the file task.c there is a function called vTaskSwitchContext, which is responsible for switching

from one task to another when a context switch is required. This function achieves its functionalities
by calling other two functions: taskSELECT HIGHEST PRIORITY TASK() and traceTASK SWITCHED IN().
The first one is where the decision is made about which task should be selected to run next. Af-
ter this call, the variable pxCurrentTCB holds a pointer to the TCB of the task to run. Then, the
traceTASK SWITCHED IN() does the effective switch.

5

In order to implement our customized logic, an alternative to the taskSELECT HIGHEST PRIORITY TASK

function needed to be introduced. For this purpose, the vTaskSwitchContext function has been modified
as follows :

1 void vTaskSwitchContext(void)

2 {

3 // (...)

4

5 # if (configUSE_TICKETS == 1)

6 int randomTicket = rand() % 100 +1; // Selected ticket between 1 and 100

7 taskSELECT_LOTTERY_WINNER_TASK(randomTicket);

8 #else

9 taskSELECT_HIGHEST_PRIORITY_TASK();

10 #endif

11

12 traceTASK_SWITCHED_IN();

13

14 // (...)

15 }

The same modification has been applied to the vTaskStartScheduler function, which is invoked
by the main to start the scheduler and choose the initial task to run. The only difference between the
code added in this two functions is that in the vTaskStartScheduler there is a call to srand(), which
initializes the seed for all subsequent calls to rand().

3.5 Winner Determination

Finally, the function responsible for determining the winner in the lottery scheduling is defined as a macro
named taskSELECT LOTTERY WINNER TASK. This function takes the previously extracted randomTicket

as input and use it to determine the winning process.

1 /* The assumption is that all the task we want to run with the lottery scheduling have the same priority. */

2 #define taskSELECT_LOTTERY_WINNER_TASK(randomTicket)

3 {

4 UBaseType_t uxTopPriority = uxTopReadyPriority;

5 int accumulatedTickets = 0;

6

7 /* Find the highest priority queue that contains ready tasks (from taskSELECT_HIGHEST_PRIORITY_TASK) */

8 portGET_HIGHEST_PRIORITY(uxTopPriority, uxTopReadyPriority);

9 configASSERT(listCURRENT_LIST_LENGTH(&(pxReadyTasksLists[uxTopPriority])) > 0);

10

11 /* Following code obtained and adapted from listGET_OWNER_OF_NEXT_ENTRY */

12 List_t* pxConstList = &(pxReadyTasksLists[uxTopPriority]);

13

14 /* We want to start by looking always at the first task => listGET_HEAD_ENTRY */

15 /* pxIndex = Used to walk through the List_t, point to a xLIST_ITEM */

16 /* pvOwner = Pointer to the TCB. It is contained in the xLIST_ITEM */

17 ListItem_t* pxListItem = listGET_HEAD_ENTRY(pxConstList); /*return ListItem */

18

19 while(1){

20 (pxCurrentTCB) = (pxListItem)->pvOwner;

21 accumulatedTickets = accumulatedTickets + (pxCurrentTCB)-> nTickets;

22

23 if(accumulatedTickets >= randomTicket){

24 printf("Extracted ticket: %d\tThe winner is %s which has %d tickets\n",

25 randomTicket, (pxCurrentTCB)->pcTaskName, (pxCurrentTCB)-> nTickets);

26 break;

27 }

28

29 pxListItem = (pxListItem)->pxNext;

30 }

31 } /* taskSELECT_LOTTERY_WINNER_TASK */

4 Evaluation of the new scheduler

As mentioned before, if each process receives at least one lottery ticket it is ensured a non-zero probability
of selection during scheduling operations.

The implemented scheduling algorithm has changed FreeRTOS from a priority-based scheduler, which
utilized Round-Robin (RR) scheduling in cases of equal priority, to a priority-based scheduler employing a

6

lottery algorithm under such circumstances. This is attributed to the fact that in the previously presented
code, the first action undertaken is to find the higher priority queue of tasks (line 8, Section 3.5).

This enables us to establish a form of double-layered priority scheduler, where the first layer represents
the actual priority, and the second layer is based on tickets.

4.1 Equal Priority Tasks: Analysis RR vs TS

The selected analysis aims to compare the two scheduling algorithms in the case of multiple tasks with
equal priority. To accomplish this objective, a structure was implemented to manage time and counter
variables. Furthermore, adjustments were made to the body of individual tasks to measure the distribu-
tion of task execution and the time used for context switching.

1 // Number of execution before print the statistics

2 #define TOT_EXECUTIONS 10000

3

4 // Structure for computing Tasks' statistics

5 typedef struct timeStats {

6 int numberOfExecution[NUMBER_OF_TASKS];

7 int totalNumberOfExecution;

8

9 uint32_t previousTaskEndTime;

10 uint32_t startTaskTime;

11 uint32_t cumulativeContextSwitchTime;

12 } timeStats;

13

14 timeStats stats;

15

16 // (...)

17

18 void main(void)

19 {

20 stats.totalNumberOfExecution = 0;

21 stats.previousTaskEndTime = NULL;

22 stats.startTaskTime = NULL;

23 stats.cumulativeContextSwitchTime = 0;

24

25 // (...)

26 }

27

28 void vTask1(void *paramTask1)

29 {

30 for (;;)

31 {

32 vTaskSuspendAll();

33 //Record the current system time as the start time in milliseconds

34 stats.startTaskTime = xTaskGetTickCount();

35

36 // If is not the first task => compute the time of context switch

37 if(stats.previousTaskEndTime != NULL)

38 stats.cumulativeContextSwitchTime += stats.startTaskTime - stats.previousTaskEndTime;

39

40 stats.numberOfExecution[0]++;

41 stats.totalNumberOfExecution++;

42

43 // Print statistics after the threshold TOT_EXECUTIONS has been reached

44 if(stats.totalNumberOfExecution % TOT_EXECUTIONS == 0)

45 {

46 for(int i = 0; i < NUMBER_OF_TASKS; i++)

47 printf("Task %d usage: %d out of %d\n", i+1, stats.numberOfExecution[i],

stats.totalNumberOfExecution);↪→

48

49 printf("Total running time: %u\n", xTaskGetTickCount());

50 printf("Total Context Switch Time: %u ms\n\n", stats.cumulativeContextSwitchTime);

51 }

52

53 // Set the previousTaskEndTime to compute the next context switch time

54 stats.previousTaskEndTime = xTaskGetTickCount();

55 xTaskResumeAll();

56 }

57 }

58

59 // (...)

7

The frequency of the RTOS tick interrupt is crucial for the time measurement within the analysis. It
is defined in the FreeRTOSConfig.h file under the name configTICK RATE HZ. By setting this parameter
to 1000 (1KHz), a tick interrupt occurs every 1ms.

4.1.1 Results of the analysis

From the tables provided below, it is observable the behavior of the two distinct scheduling approaches.
Round Robin aims to allocate CPU utilization equally among all involved tasks, theoretically achieving
a percentage of 33 for each task.

Given that in this implementation the total number of tickets is 100, the ticket scheduler achieves a
distribution that respects the number of tickets assigned to each task. For instance, the TS (33, 33,

34) tends to achieve similar results to those of RR.

Table 1: Comparison of Round Robin and Ticket Scheduling after 10,000 task executions
Task RR TS (33, 33, 34) TS (60, 30, 10) TS (89, 10, 1)
Task 1 3.007 (30%) 2.938 (29%) 8.755 (88%) 10.000 (100%)
Task 2 2.456 (25%) 3.909 (39%) 1.245 (12%) 0 (0%)
Task 3 4.537 (45%) 3.153 (32%) 0 (0%) 0 (0%)

Running Time: 15ms 13ms 16ms 14ms
Context Switch Time: 13ms 12ms 15ms 12ms

Table 2: Comparison of Round Robin and Ticket Scheduling after 100,000 task executions
Task RR TS (33, 33, 34) TS (60, 30, 10) TS (89, 10, 1)
Task 1 36.866 (37%) 37.877 (38%) 68.737 (69%) 89.299 (89%)
Task 2 29.494 (29%) 31.202 (31%) 19.045 (19%) 10.131 (10%)
Task 3 33.640 (34%) 30.921 (31%) 12.218 (12%) 570 (1%)

Running Time: 194ms 201ms 221ms 204ms
Context Switch Time: 193ms 200ms 219ms 203ms

Table 3: Comparison of Round Robin and Ticket Scheduling after 1,000,000 task executions
Task RR TS (33, 33, 34) TS (60, 30, 10) TS (89, 10, 1)
Task 1 358.745 (36%) 360.297 (36%) 649.925 (65%) 915.966 (91.6%)
Task 2 278.440 (28%) 277.808 (28%) 242.865 (24%) 76.623 (7.7%)
Task 3 362.815 (36%) 361.895 (36%) 107.210 (11%) 7.411 (0.7%)

Running Time: 2.444ms 2.348ms 2.485ms 2.587ms
Context Switch Time: 2.443ms 2.347ms 2.484ms 2.585ms

Regarding the running and context switch times, it is notable that the running time is predominantly
composed by the context switch time. The similarity between the two arises because the tasks do not
execute any operations.

4.1.2 Context Switch Time

Another observation is that the context switch time can vary within the same implementation of ticket
scheduling based on the position of tasks within the process list.

If the task with the highest number of tickets is positioned at the beginning of the process list, this
implies that the winner of the majority of ticket extractions can be obtained with the first access to the
list. In contrast, if it was positioned at the end of the list, this would mean having to traverse the entire
list to obtain the winner.

From the table below, it is shown that in the case of executing 3 million tasks, when the first task pos-
sesses 98% of the tickets, the total context switch time amounts to approximately 7 seconds. Conversely,
in the opposite scenario where it is necessary to traverse the entire list in 98% of cases, two seconds more
will be required.

8

Table 4: Comparison of Round Robin and Ticket Scheduling after 3,000,000 task executions
Task RR TS (98, 1, 1) TS (1, 1, 98)
Task 1 1.065.460 (35.5%) 2.949.580 (98.3%) 37.969 (1.3%)
Task 2 860.132 (28.7%) 19.299 (0.6%) 24.133 (0.8%)
Task 3 1.074.408 (35.8%) 31.121 (1.0%) 2.937.898 (97.9%)

Running Time: 7.115ms 7.070ms 9.223ms
Context Switch Time: 7.114ms 7.068ms 9.221ms

To enhance this process’s efficiency, it is generally advisable to organize the list in sorted order, arrang-
ing tasks from the highest number of tickets to the lowest. This sorting doesn’t impact the algorithm’s
correctness, but it typically minimizes the number of list iterations, particularly when a few processes
hold the majority of the tickets.

9

	Introduction to FreeRTOS
	Explore Fundamentals APIs
	UART Configuration
	Task Creation API
	Mutex API for Synchronization
	Timer and Task Notifications API

	Task Priority & Scheduling

	Purpose of the Report
	Pseudo Code
	Example

	Implementation of Lottery Scheduling in FreeRTOS
	Configuration Costant
	New TCB
	Ticket Allocation
	Random Ticket Selection
	Winner Determination

	Evaluation of the new scheduler
	Equal Priority Tasks: Analysis RR vs TS
	Results of the analysis
	Context Switch Time

